A proposal for the diagnosis of uncertain dynamic systems based on interval models
نویسنده
چکیده
The performance of a model-based diagnosis system could be affected by several uncertainty sources, such as, model errors, uncertainty in measurements, and disturbances. This uncertainty can be handled by mean of interval models. The aim of this thesis is to propose a methodology for fault detection, isolation and identification based on interval models. Especially a modal interval based technique, and interval based consistency technique (ICTs) are considered. The thesis includes some proposals to perform each stage within the diagnosis process, from the design of the fault detection tests, to the quantitative fault isolation and identification stage. Thus, the methodology includes some algorithms to obtain in an automatic way the symbolic expression of the residual generators enhancing the structural isolability of the faults, in order to design the fault detection tests. These algorithms are based on the structural model of the system. The stages of fault detection, isolation, and identification are stated as constraint satisfaction problems in continuos domains and solved by means of interval based consistency techniques. The qualitative fault isolation is enhanced by a reasoning in which the signs of the symptoms are derived from analytical redundancy relations or bond graph models of the system. The quantitative fault isolation and identification is performed by means of a faulty parameters estimation approach. An initial and empirical analysis regarding the diferencies between interval-based and statistical-based techniques is presented in this thesis. Methods included in this comparison are, ICTs on one side, and a statistical decision technique that combines Extended Kalman filter and Z-test on the other side. The performance and efficiency of the contributions are illustrated through several application examples, covering different levels of complexity.
منابع مشابه
Using Interval Petri Nets and Timed Automata for Diagnosis of Discrete Event Systems (DES)
A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt occurrence, at possibly unknown irregular intervals, of physical events. Because of the special nature of these systems, different tools are currently used for their analysis, design and modeling. The main focus of this paper is the presentation of a new modeling approach of Discrete Event Systems. The ...
متن کاملInterval network data envelopment analysis model for classification of investment companies in the presence of uncertain data
The main purpose of this paper is to propose an approach for performance measurement, classification and ranking the investment companies (ICs) by considering internal structure and uncertainty. In order to reach this goal, the interval network data envelopment analysis (INDEA) models are extended. This model is capable to model two-stage efficiency with intermediate measures i...
متن کاملRobust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance
This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملUsing Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain Systems
Using Tracking Differentiators in Designing Nonlinear Disturbance Observers for Uncertain SystemsNaser Kazemzadeh, Saeed BarghandanAbstractIn the present paper, a practical designing method has been proposed for a novel class of NDOs based on TD. Such NDOs can nearly estimate all uncertain disturbances (specifically disturbances without prediction information). Regarding the outstanding perform...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کامل